Targeted multi-epitope switching enables straightforward positive/negative selection of CAR T cells

靶向多表位转换可实现CAR T细胞的直接阳性/阴性选择。

阅读:1
作者:Laura Mosti ,Lukas M Langner ,Kay O Chmielewski ,Patrick Arbuthnot ,Jamal Alzubi ,Toni Cathomen

Abstract

Chimeric antigen receptor (CAR) T cell technology has enabled successfully novel concepts to treat cancer patients, with substantial remission rates in lymphoid malignancies. This cell therapy is based on autologous T lymphocytes that are genetically modified to express a CAR that recognizes tumor-associated antigens and mediates the elimination of the respective tumor cells. Current limitations include laborious manufacturing procedures as well as severe immunological side effects upon administration of CAR T cells. To address these limitations, we integrated RQR8, a multi-epitope molecule harboring a CD34 epitope and two CD20 mimotopes, alongside a CD19-targeting CAR, into the CD52 locus. Using CRISPR-Cas9 and adeno-associated virus-based donor vectors, some 60% of genome-edited T cells were CAR+/CD20+/CD34+/CD52- without further selection. This could be increased to >95% purity after CD34 tag-based positive selection. These epitope-switched CAR T cells retained cell killing competence against CD19+ tumor cells, and were resistant to alemtuzumab (anti-CD52) but sensitive to rituximab (anti-CD20) in complement-dependent cytotoxicity assays. In conclusion, gene editing-based multiple epitope switching represents a promising development with the potential to improve both the manufacturing procedure as well as the clinical safety of CAR T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。