Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology

利用新型气体分析技术通过饮食和美沙拉嗪调节结肠硫化氢的产生

阅读:4
作者:Chu K Yao, Asaf Rotbart, Jian Z Ou, Kourosh Kalantar-Zadeh, Jane G Muir, Peter R Gibson

Abstract

Excessive hydrogen sulfide (H2S) production from gut microbial metabolism may have clinically important relevance in the pathogenesis of gut disorders, including ulcerative colitis. However, little is known regarding factors that alter its production. Using a newly-designed in vitro gas-profiling technology, the study aimed to verify real-time H2S measurement reproducibility and thereafter, assess its production following exposure to dietary factors and 5-aminosalicylate acid (5-ASA). Measurements of H2S, carbon dioxide, hydrogen and methane measurements were compared between gas-profiling systems. Homogenized slurries were prepared from freshly-passed healthy human feces. Fifty ml slurries were aliquoted into separate fermentation chambers and substrates added including 1 g highly fermentable fructo-oligosaccharides (FOS) or resistant starch Hi-Maize (RS), or minimally fermentable psyllium or sterculia, 1 g cysteine, 0.9 g sodium sulfate or 1.2 mL of 1 M 5-ASA alone or in combinations. H2S release was sampled every 5 mins over 4-h and expressed relative to unspiked controls. RS suppressed H2S production by a mean 89.0 (SEM 4.8)% and FOS by 82.2 (6.2)% compared to <35 (17)% by psyllium and sterculia (p<0.001, two-way ANOVA). Cysteine stimulated H2S production by 1557 (532)%. The addition of FOS to slurries containing cysteine significantly suppressed H2S by 90 (2)% over the addition of 5-ASA (0.3 (2)%, p<0.001). Sulfate and 5-ASA had minimal overall effects. In conclusion, the H2S-profiling technology is a reproducible tool. Production of H2S is greatly enhanced by sulfur-amino acids but not inorganic sulfate, and is effectively suppressed by readily fermentable fibers. These findings inform potential designs of dietary therapies to reduce H2S production in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。