Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems

木犀草素通过增强抗氧化系统对氧化应激介导的细胞损伤发挥保护作用

阅读:7
作者:Pincha Devage Sameera Madushan Fernando #, Dong Ok Ko #, Mei Jing Piao, Kyoung Ah Kang, Herath Mudiyanselage Udari Lakmini Herath, Jin Won Hyun

Abstract

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer‑associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7‑tetrahydroxyflavone) against hydrogen peroxide (H2O2)‑generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2‑induced damages, cell viability, sub‑G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2‑ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell‑free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79‑4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2‑treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2‑mediated apoptosis. Luteolin suppressed active caspase‑9 and caspase‑3 levels while increasing Bcl‑2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase‑1. Overall, these results indicated that luteolin inhibits H2O2‑mediated cellular damage by upregulating antioxidant enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。