Full-Chain FeCl3 Catalyzation Is Sufficient to Boost Cellulase Secretion and Cellulosic Ethanol along with Valorized Supercapacitor and Biosorbent Using Desirable Corn Stalk

全链 FeCl3 催化足以促进纤维素酶分泌和纤维素乙醇以及利用理想玉米秸秆制成的增值超级电容器和生物吸附剂

阅读:11
作者:Jingyuan Liu, Xin Zhang, Hao Peng, Tianqi Li, Peng Liu, Hairong Gao, Yanting Wang, Jingfeng Tang, Qiang Li, Zhi Qi, Liangcai Peng, Tao Xia

Abstract

Cellulosic ethanol is regarded as a perfect additive for petrol fuels for global carbon neutralization. As bioethanol conversion requires strong biomass pretreatment and overpriced enzymatic hydrolysis, it is increasingly considered in the exploration of biomass processes with fewer chemicals for cost-effective biofuels and value-added bioproducts. In this study, we performed optimal liquid-hot-water pretreatment (190 °C for 10 min) co-supplied with 4% FeCl3 to achieve the near-complete biomass enzymatic saccharification of desirable corn stalk for high bioethanol production, and all the enzyme-undigestible lignocellulose residues were then examined as active biosorbents for high Cd adsorption. Furthermore, by incubating Trichoderma reesei with the desired corn stalk co-supplied with 0.05% FeCl3 for the secretion of lignocellulose-degradation enzymes in vivo, we examined five secreted enzyme activities elevated by 1.3-3.0-fold in vitro, compared to the control without FeCl3 supplementation. After further supplying 1:2 (w/w) FeCl3 into the T. reesei-undigested lignocellulose residue for the thermal-carbonization process, we generated highly porous carbon with specific electroconductivity raised by 3-12-fold for the supercapacitor. Therefore, this work demonstrates that FeCl3 can act as a universal catalyst for the full-chain enhancement of biological, biochemical, and chemical conversions of lignocellulose substrates, providing a green-like strategy for low-cost biofuels and high-value bioproducts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。