Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's?

选择性 DYRK1A 抑制剂的设计、合成和生物学评估的最新进展:治疗阿尔茨海默病的新途径?

阅读:11
作者:Breland Smith, Federico Medda, Vijay Gokhale, Travis Dunckley, Christopher Hulme

Abstract

With 24.3 million people affected in 2005 and an estimated rise to 42.3 million in 2020, dementia is currently a leading unmet medical need and costly burden on public health. Seventy percent of these cases have been attributed to Alzheimer's disease (AD), a neurodegenerative pathology whose most evident symptom is a progressive decline in cognitive functions. Dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) is important in neuronal development and plays a variety of functional roles within the adult central nervous system. The DYRK1A gene is located within the Down syndrome critical region (DSCR) on human chromosome 21 and current research suggests that overexpression of DYRK1A may be a significant factor leading to cognitive deficits in people with Alzheimer's disease (AD) and Down syndrome (DS). Currently, treatment options for cognitive deficiencies associated with Down syndrome, as well as Alzheimer's disease, are extremely limited and represent a major unmet therapeutic need. Small molecule inhibition of DYRK1A activity in the brain may provide an avenue for pharmaceutical intervention of mental impairment associated with AD and other neurodegenerative diseases. We herein review the current state of the art in the development of DYRK1A inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。