UDiTaS™, a genome editing detection method for indels and genome rearrangements

UDiTaS™,一种用于检测插入/缺失和基因组重排的基因组编辑方法

阅读:7
作者:Georgia Giannoukos, Dawn M Ciulla, Eugenio Marco, Hayat S Abdulkerim, Luis A Barrera, Anne Bothmer, Vidya Dhanapal, Sebastian W Gloskowski, Hariharan Jayaram, Morgan L Maeder, Maxwell N Skor, Tongyao Wang, Vic E Myer, Christopher J Wilson

Background

Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations.

Conclusions

UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.

Results

To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290, and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes. Conclusions: UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。