Non-Invasive Monitoring of Increased Fibrotic Tissue and Hyaluronan Deposition in the Tumor Microenvironment in the Advanced Stages of Pancreatic Ductal Adenocarcinoma

无创监测胰腺导管腺癌晚期肿瘤微环境中纤维化组织和透明质酸沉积的增加

阅读:8
作者:Ravneet Vohra, Yak-Nam Wang, Helena Son, Stephanie Totten, Akshit Arora, Adam Maxwell, Donghoon Lee

Abstract

Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = -0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = -0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。