Emulsion patterns in the wake of a liquid-liquid phase separation front

液-液相分离前沿后的乳液形态

阅读:12
作者:Pepijn G Moerman, Pierre C Hohenberg, Eric Vanden-Eijnden, Jasna Brujic

Abstract

Miscible liquids can phase separate in response to a composition change. In bulk fluids, the demixing begins on molecular-length scales, which coarsen into macroscopic phases. By contrast, confining a mixture in microfluidic droplets causes sequential phase separation bursts, which self-organize into rings of oil and water to make multilayered emulsions. The spacing in these nonequilibrium patterns is self-similar and scale-free over a range of droplet sizes. We develop a modified Cahn-Hilliard model, in which an immiscibility front with stretched exponential dynamics quantitatively predicts the spacing of the layers. In addition, a scaling law predicts the lifetime of each layer, giving rise to a stepwise release of inner droplets. Analogously, in long rectangular capillaries, a diffusive front yields large-scale oil and water stripes on the time scale of hours. The same theory relates their characteristic length scale to the speed of the front and the rate of mass transport. Control over liquid-liquid phase separation into large-scale patterns finds potential material applications in living cells, encapsulation, particulate design, and surface patterning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。