Modulation of the Tumor Microenvironment with Trastuzumab Enables Radiosensitization in HER2+ Breast Cancer

曲妥珠单抗调节肿瘤微环境可使 HER2+ 乳腺癌实现放射增敏

阅读:10
作者:Patrick N Song, Ameer Mansur, Yun Lu, Deborah Della Manna, Andrew Burns, Sharon Samuel, Katherine Heinzman, Suzanne E Lapi, Eddy S Yang, Anna G Sorace

Abstract

DNA damage repair and tumor hypoxia contribute to intratumoral cellular and molecular heterogeneity and affect radiation response. The goal of this study is to investigate anti-HER2-induced radiosensitization of the tumor microenvironment to enhance fractionated radiotherapy in models of HER2+ breast cancer. This is monitored through in vitro and in vivo studies of phosphorylated γ-H2AX, [18F]-fluoromisonidazole (FMISO)-PET, and transcriptomic analysis. In vitro, HER2+ breast cancer cell lines were treated with trastuzumab prior to radiation and DNA double-strand breaks (DSB) were quantified. In vivo, HER2+ human cell line or patient-derived xenograft models were treated with trastuzumab, fractionated radiation, or a combination and monitored longitudinally with [18F]-FMISO-PET. In vitro DSB analysis revealed that trastuzumab administered prior to fractionated radiation increased DSB. In vivo, trastuzumab prior to fractionated radiation significantly reduced hypoxia, as detected through decreased [18F]-FMISO SUV, synergistically improving long-term tumor response. Significant changes in IL-2, IFN-gamma, and THBS-4 were observed in combination-treated tumors. Trastuzumab prior to fractionated radiation synergistically increases radiotherapy in vitro and in vivo in HER2+ breast cancer which is independent of anti-HER2 response alone. Modulation of the tumor microenvironment, through increased tumor oxygenation and decreased DNA damage response, can be translated to other cancers with first-line radiation therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。