Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors

富勒烯组装衍生的纳米多孔空心碳球作为高性能超级电容器的电极材料

阅读:9
作者:Lok Kumar Shrestha, Zexuan Wei, Gokulnath Subramaniam, Rekha Goswami Shrestha, Ravi Singh, Marappan Sathish, Renzhi Ma, Jonathan P Hill, Junji Nakamura, Katsuhiko Ariga

Abstract

The energy storage performances of supercapacitors are expected to be enhanced by the use of nanostructured hierarchically micro/mesoporous hollow carbon materials based on their ultra-high specific surface areas and rapid diffusion of electrolyte ions through the interconnected channels of their mesoporous structures. In this work, we report the electrochemical supercapacitance properties of hollow carbon spheres prepared by high-temperature carbonization of self-assembled fullerene-ethylenediamine hollow spheres (FE-HS). FE-HS, having an average external diameter of 290 nm, an internal diameter of 65 nm, and a wall thickness of 225 nm, were prepared by using the dynamic liquid-liquid interfacial precipitation (DLLIP) method at ambient conditions of temperature and pressure. High temperature carbonization (at 700, 900, and 1100 °C) of the FE-HS yielded nanoporous (micro/mesoporous) hollow carbon spheres with large surface areas (612 to 1616 m2 g-1) and large pore volumes (0.925 to 1.346 cm3 g-1) dependent on the temperature applied. The sample obtained by carbonization of FE-HS at 900 °C (FE-HS_900) displayed optimum surface area and exhibited remarkable electrochemical electrical double-layer capacitance properties in aq. 1 M sulfuric acid due to its well-developed porosity, interconnected pore structure, and large surface area. For a three-electrode cell setup, a specific capacitance of 293 F g-1 at a 1 A g-1 current density, which is approximately 4 times greater than the specific capacitance of the starting material, FE-HS. The symmetric supercapacitor cell was assembled using FE-HS_900 and attained 164 F g-1 at 1 A g-1 with sustained 50% capacitance at 10 A g-1 accompanied by 96% cycle life and 98% coulombic efficiency after 10,000 consecutive charge/discharge cycles. The results demonstrate the excellent potential of these fullerene assemblies in the fabrication of nanoporous carbon materials with the extensive surface areas required for high-performance energy storage supercapacitor applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。