Correcting Artifacts in Single Molecule Localization Microscopy Analysis Arising from Pixel Quantum Efficiency Differences in sCMOS Cameras

校正 sCMOS 相机像素量子效率差异导致的单分子定位显微镜分析中的伪影

阅读:6
作者:Hazen P Babcock, Fang Huang, Colenso M Speer

Abstract

Optimal analysis of single molecule localization microscopy (SMLM) data acquired with a scientific Complementary Metal-Oxide-Semiconductor (sCMOS) camera relies on statistical compensation for its pixel-dependent gain, offset and readout noise. In this work we show that it is also necessary to compensate for differences in the relative quantum efficiency (RQE) of each pixel. We found differences in RQE on the order of 4% in our tested sCMOS sensors. These differences were large enough to have a noticeable effect on analysis algorithm results, as seen both in simulations and biological imaging data. We discuss how the RQE differences manifest themselves in the analysis results and present the modifications to the Poisson maximum likelihood estimation (MLE) sCMOS analysis algorithm that are needed to correct for the RQE differences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。