Exploiting sweet relief for preeclampsia by targeting autophagy-lysosomal machinery and proteinopathy

通过靶向自噬-溶酶体机制和蛋白质病利用甜味剂缓解先兆子痫

阅读:5
作者:Zheping Huang, Shibin Cheng, Sukanta Jash, Jamie Fierce, Anthony Agudelo, Takanobu Higashiyama, Nazeeh Hanna, Akitoshi Nakashima, Shigeru Saito, James Padbury, Jessica Schuster, Surendra Sharma

Abstract

The etiology of preeclampsia (PE), a severe complication of pregnancy with several clinical manifestations and a high incidence of maternal and fetal morbidity and mortality, remains unclear. This issue is a major hurdle for effective treatment strategies. We recently demonstrated that PE exhibits an Alzheimer-like etiology of impaired autophagy and proteinopathy in the placenta. Targeting of these pathological pathways may be a novel therapeutic strategy for PE. Stimulation of autophagy with the natural disaccharide trehalose and its lacto analog lactotrehalose in hypoxia-exposed primary human trophoblasts restored autophagy, inhibited the accumulation of toxic protein aggregates, and restored the ultrastructural features of autophagosomes and autolysosomes. Importantly, trehalose and lactotrehalose inhibited the onset of PE-like features in a humanized mouse model by normalizing autophagy and inhibiting protein aggregation in the placenta. These disaccharides restored the autophagy-lysosomal biogenesis machinery by increasing nuclear translocation of the master transcriptional regulator TFEB. RNA-seq analysis of the placentas of mice with PE indicated the normalization of the PE-associated transcriptome profile in response to trehalose and lactotrehalose. In summary, our results provide a novel molecular rationale for impaired autophagy and proteinopathy in patients with PE and identify treatment with trehalose and its lacto analog as promising therapeutic options for this severe pregnancy complication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。