Nuclear Factor-κB Signaling Mediates Antimony-induced Astrocyte Activation

核因子-κB信号介导锑诱导的星形胶质细胞活化

阅读:5
作者:Tao Zhang, Yu Dan Zheng, Man Jiao, Ye Zhi, Shen Ya Xu, Piao Yu Zhu, Xin Yuan Zhao, Qi Yun Wu

Conclusion

Antimony activated astrocytes by activating the NF-κB signaling pathway.

Methods

Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).

Objective

Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.

Results

Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation in vivo and in vitro. Antimony exposure consistently upregulated the expression of inflammatory factors. Moreover, it induced the NF-κB signaling, indicated by increased p65 phosphorylation and translocation to the nucleus. NF-κB inhibition effectively attenuated antimony-induced astrocyte activation. Furthermore, antimony phosphorylated TGF-β-activated kinase 1 (TAK1), while TAK1 inhibition alleviated antimony-induced p65 phosphorylation and subsequent astrocyte activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。