Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans

小鼠平衡核苷转运蛋白 1 的缺失导致脊髓组织进行性异位矿化,类似于人类弥漫性特发性骨质增生

阅读:8
作者:Sumeeta Warraich, Derek B J Bone, Diana Quinonez, Hisataka Ii, Doo-Sup Choi, David W Holdsworth, Maria Drangova, S Jeffrey Dixon, Cheryle A Séguin, James R Hammond

Abstract

Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments. Recent studies have suggested a role for purine metabolism in the regulation of biomineralization. Equilibrative nucleoside transporter 1 (ENT1) transfers hydrophilic nucleosides, such as adenosine, across the plasma membrane. In mice lacking ENT1, we observed the development of calcified lesions resembling DISH. By 12 months of age, ENT1(-/-) mice exhibited signs of spine stiffness, hind limb dysfunction, and paralysis. Micro-computed tomography (µCT) revealed ectopic mineralization of paraspinal tissues in the cervical-thoracic region at 2 months of age, which extended to the lumbar and caudal regions with advancing age. Energy-dispersive X-ray microanalysis of lesions revealed a high content of calcium and phosphorus with a ratio similar to that of cortical bone. At 12 months of age, histological examination of ENT1(-/-) mice revealed large, irregular accumulations of eosinophilic material in paraspinal ligaments and entheses, intervertebral discs, and sternocostal articulations. There was no evidence of mineralization in appendicular joints or blood vessels, indicating specificity for the axial skeleton. Plasma adenosine levels were significantly greater in ENT1(-/-) mice than in wild-type, consistent with loss of ENT1--a primary adenosine uptake pathway. There was a significant reduction in the expression of Enpp1, Ank, and Alpl in intervertebral discs from ENT1(-/-) mice compared to wild-type mice. Elevated plasma levels of inorganic pyrophosphate in ENT1(-/-) mice indicated generalized disruption of pyrophosphate homeostasis. This is the first report of a role for ENT1 in regulating the calcification of soft tissues. Moreover, ENT1(-/-) mice may be a useful model for investigating pathogenesis and evaluating therapeutics for the prevention of mineralization in DISH and related disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。