Fast Electrochemical Actuator with Ti Electrodes in the Current Stabilization Regime

电流稳定状态下的钛电极快速电化学驱动器

阅读:8
作者:Ilia V Uvarov, Artem E Melenev, Vitaly B Svetovoy

Abstract

The actuators needed for autonomous microfluidic devices have to be compact, low-power-consuming, and compatible with microtechnology. The electrochemical actuators could be good candidates, but they suffer from a long response time due to slow gas termination. An actuator in which the gas is terminated orders of magnitude faster has been demonstrated recently. It uses water electrolysis performed by short voltage pulses of alternating polarity (AP). However, oxidation of Ti electrodes leads to a rapid decrease in the performance. In this paper, we demonstrate a special driving regime of the actuator, which is able to support a constant stroke for at least 105 cycles. The result is achieved using a new driving regime when a series of AP pulses are interspersed with a series of single-polarity (SP) pulses. The new regime is realized by a special pulse generator that automatically adjusts the amplitude of the SP pulses to keep the current flowing through the electrodes at a fixed level. The SP pulses increase the power consumption by 15-60% compared to the normal AP operation and make the membrane oscillate in a slightly lifted position.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。