Structure-Based Optimization of Small-Molecule Inhibitors for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction

基于结构的 β-Catenin/B 细胞淋巴瘤 9 蛋白质-蛋白质相互作用小分子抑制剂的优化

阅读:10
作者:Min Zhang, Zhen Wang, Yongqiang Zhang, Wenxing Guo, Haitao Ji

Abstract

Structure-based optimization was conducted to improve the potency, selectivity, and cell-based activities of β-catenin/B-cell lymphoma 9 (BCL9) inhibitors based on the 4'-fluoro- N-phenyl-[1,1'-biphenyl]-3-carboxamide scaffold, which was designed to mimic the side chains of the hydrophobic α-helical hot spots at positions i, i + 3, and i + 7. Compound 29 was found to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.47 μM and >1900-fold selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The proposed binding mode of new inhibitors was consistent with the results of site-directed mutagenesis and structure-activity relationship studies. Cell-based studies indicated that 29 disrupted the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction, selectively suppressed transactivation of Wnt/β-catenin signaling, downregulated expression of Wnt target genes, and inhibited viability of Wnt/β-catenin-dependent cancer cells in dose-dependent manners. A comparison of the biochemical and cell-based assay results offered the directions for future inhibitor optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。