Role of SESTRIN2/AMPK/ULK1 pathway activation and lysosomes dysfunction in NaAsO2-induced liver injury under oxidative stress

SESTRIN2/AMPK/ULK1通路激活和溶酶体功能障碍在氧化应激下NaAsO2诱导的肝损伤中的作用

阅读:4
作者:Dingnian Bi, Dan Zheng, Mingyang Shi, Qian Hu, Hongling Wang, Haiyan Zhi, Didong Lou, Aihua Zhang, Yong Hu

Abstract

Arsenic, a serious environmental poison to human health, is widely distributed in nature. As the main organ of arsenic metabolism, liver is easily damaged. In the present study, we found that arsenic exposure can cause liver injury in vivo and in vitro, to date the underlying mechanism of which is yet unclear. Autophagy is a process that depends on lysosomes to degrade damaged proteins and organelles. Here, we reported that oxidative stress can be induced and then activated the SESTRIN2/AMPK/ULK1 pathway, damaged lysosomes, and finally induced necrosis upon arsenic exposure in rats and primary hepatocytes, which was characterized by lipidation of LC3II, the accumulation of P62 and the activation of RIPK1 and RIPK3. Similarly, lysosomes function and autophagy can be damaged under arsenic exposure, which can be alleviated after NAC treatment and aggravated by Leupeptin treatment in primary hepatocytes. Moreover, we also found that the transcription and protein expressions of necrotic-related indicators RIPK1 and RIPK3 in primary hepatocytes were decreased after P62 siRNA. Taken together, the results revealed that arsenic can induce oxidative stress, activate SESTRIN2/AMPK/ULK1 pathway to damage lysosomes and autophagy, and eventually induce necrosis to damage liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。