Triphenyl phosphate causes a sexually dimorphic metabolism dysfunction associated with disordered adiponectin receptors in pubertal mice

磷酸三苯酯导致青春期小鼠出现与脂联素受体紊乱相关的性别二态性代谢功能障碍

阅读:10
作者:Cui Wang, Yifei Le, Dezhao Lu, Meirong Zhao, Xiaobing Dou, Quan Zhang

Abstract

The potential for triphenyl phosphate (TPhP) caused metabolic dysfunction has been documented. However, the relative mechanism of sexual dimorphic disruption on metabolism induced by TPhP remains unclear. Herein, we observed the insulin-sensitizing hormone (adiponectin) was inhibited in female serum while stimulated in males after oral administration of TPhP. Correspondingly, we found a high index of HOMA-IR in females. The primary receptors of adiponectin (AdipoR1 and AdipoR2) and the downstream: phosphorylation of AKT (pAKT) and PPAR⍺ signaling was attenuated in female liver. The disordered adiponectin/AdipoR signaling reduced hepatic glucose glycolysis and induced gluconeogenesis and finally led to the glucose intolerance in females. Also, the aberrant fatty acid β-oxidation and hepatic triacylglyceride (TG) deposition were found in female liver. Comparably, TPhP upregulated the AdipoR 1/2 and induced the downstream (pAMPK and PPAR⍺ signaling) in males. Thus, the serum glucose and hepatic TG level remained normal. However, modulation on AdipoR1/R2 and the genes related to glucose and lipid disposal in skeletal muscle has no gender-specific effect. Our research firstly revealed TPhP-induced hepatic nutrient metabolism was partially mediated by the adiponectin/AdipoR pathway in sexual-dependent manner during pubertal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。