LncRNA X Inactive Specific Transcript Exerts a Protective Effect on High Glucose-Induced Podocytes by Promoting the Podocyte Autophagy via miR-30d-5p/BECN-1 Axis

LncRNA X 失活特异性转录本通过 miR-30d-5p/BECN-1 轴促进足细胞自噬,对高糖诱导的足细胞发挥保护作用

阅读:5
作者:Ying Cai, Sheng Chen, Xiaoli Jiang, Qiyuan Wu, Yong Xu, Fang Wang

Abstract

Inhibiting podocyte autophagy promotes the development of diabetic nephropathy (DN). This study aims to explore the upstream regulatory mechanism of the autophagy-related gene BECN1 in high glucose (HG)-induced podocytes. C57BL/6 mice were treated with 50 mg/kg streptozotocin to construct a DN model. Biochemical indexes, pathological morphology of renal tissue, the morphology of renal podocytes, and the expressions of autophagy-related proteins in DN mice and normal mice were detected. The upstream miRNAs of BECN1 and the upstream long noncoding RNAs (lncRNAs) of miR-30d-5p were predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Mouse podocyte clone 5 (MPC5) cells were exposed to HG to construct a DN cell model. The levels of miR-30d-5p, X inactive specific transcript (XIST), and BECN1 in mouse kidney and MPC5 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The regulation of XIST/miR-30d-5p on the viability, apoptosis as well as proteins related to apoptosis, epithelial-mesenchymal transition (EMT), and autophagy in MPC5 cells were determined by rescue experiments. The levels of glucose, urinary protein, serum creatinine, and blood urea nitrogen were upregulated, but the kidney tissues and podocytes were damaged in DN mice. XIST targeted miR-30d-5p to promote viability while suppressing the apoptosis of HG-induced MPC5 cells. In kidney tissues or HG-induced MPC5 cells, the expressions of Beclin-1, light chain 3 (LC3) II/I, XIST, B-celllymphoma-2 (Bcl-2), and E-cadherin were downregulated, while the expressions of P62, miR-30d-5p, Bcl-2-associated X protein (Bax), cleaved-caspase-3, vimentin, and alpha-smooth muscle actin (α-SMA) were upregulated, which were reversed by XIST overexpression. The reversal effect of XIST overexpression was offset by miR-30d-5p mimic. Collectively, XIST promotes the autophagy of podocytes by regulating the miR-30d-5p/BECN1 axis to protect podocytes from HG-induced injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。