Inhibition of G Protein βγ Subunit Signaling Abrogates Nephritis in Lupus-Prone Mice

抑制 G 蛋白 βγ 亚基信号传导可消除狼疮易感小鼠的肾炎

阅读:5
作者:Javier Rangel-Moreno, Jesi Y To, Teresa Owen, Bruce I Goldman, Alan V Smrcka, Jennifer H Anolik

Conclusion

Overall, these data demonstrate the potential use of gallein or novel inhibitors of Gβγ signaling in SLE treatment.

Methods

Lupus-prone (NZB × NZW)F1 female mice were prophylactically or therapeutically treated with the small-molecule Gβγ inhibitor gallein. Tissue samples were analyzed by flow cytometry and immunohistochemistry. The development and extent of nephritis were assessed by monitoring proteinuria and by immunohistochemical analysis. Serum immunoglobulin levels were measured by enzyme-linked immunosorbent assay, and total IgG and anti-double-stranded DNA (anti-dsDNA) antibody-secreting cells were measured by enzyme-linked immunospot assay.

Objective

Despite considerable advances in the understanding of systemic lupus erythematosus (SLE), there is still an urgent need for new and more targeted treatment approaches. We previously demonstrated that small-molecule blockade of G protein βγ subunit (Gβγ) signaling inhibits acute inflammation through inhibition of chemokine receptor signal transduction. We undertook this study to determine whether inhibition of Gβγ signaling ameliorates disease in a mouse model of SLE.

Results

Gallein inhibited accumulation of T cells and germinal center (GC) B cells in the spleen. Both prophylactic and therapeutic treatment reduced GC size, decreased antibody-secreting cell production in the spleen, and markedly decreased accumulation of autoreactive anti-dsDNA antibody-secreting cells in kidneys. Gallein also reduced immune complex deposition in kidneys. Finally, gallein treatment dramatically inhibited kidney inflammation, prevented glomerular damage, and decreased proteinuria. Mechanistically, gallein inhibited immune cell migration and signaling in response to chemokines in vitro, which suggests that its mechanisms of action in vivo are inhibition of migration of immune cells to sites of inflammation and inhibition of immune cell maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。