Noise Tailoring in Memristive Filaments

忆阻丝中的噪声调整

阅读:5
作者:Botond Sánta, Zoltán Balogh, László Pósa, Dávid Krisztián, Tímea Nóra Török, Dániel Molnár, Csaba Sinkó, Roland Hauert, Miklós Csontos, András Halbritter

Abstract

In this study, the possibilities of noise tailoring in filamentary resistive switching memory devices are investigated. To this end, the resistance and frequency scaling of the low-frequency 1/f-type noise properties are studied in representative mainstream material systems. It is shown that the overall noise floor is tailorable by the proper material choice, as demonstrated by the order-of-magnitude smaller noise levels in Ta2O5 and Nb2O5 transition-metal oxide memristors compared to Ag-based devices. Furthermore, the variation of the resistance states allows orders-of-magnitude tuning of the relative noise level in all of these material systems. This behavior is analyzed in the framework of a point-contact noise model highlighting the possibility for the disorder-induced suppression of the noise contribution arising from remote fluctuators. These findings promote the design of multipurpose resistive switching units, which can simultaneously serve as analog-tunable memory elements and tunable noise sources in probabilistic computing machines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。