Familial melanoma-associated mutations in p16 uncouple its tumor-suppressor functions

家族性黑色素瘤相关 p16 突变会破坏其肿瘤抑制功能

阅读:6
作者:Noah C Jenkins, Jae Jung, Tong Liu, Megan Wilde, Sheri L Holmen, Douglas Grossman

Abstract

Familial melanoma is associated with point mutations in the cyclin-dependent kinase (CDK) inhibitor p16(INK4A) (p16). We recently reported that p16 regulates intracellular oxidative stress in a cell cycle-independent manner. Here we constructed 12 different familial melanoma-associated point mutants spanning the p16 coding region and analyzed their capacity to regulate cell cycle phase and suppress reactive oxygen species (ROS). Compared with wild-type p16, which fully restored both functions in p16-deficient fibroblasts, various p16 mutants differed in their capacity to normalize ROS and cell cycle profiles. Although some mutations did not impair either function, others impaired both. Interestingly, several mutations impaired cell cycle (R24Q, R99P, and V126D) or oxidative functions (A36P, A57V, and P114S) selectively, indicating that these two functions of p16 can be uncoupled. Similar activities were confirmed with selected mutants in human melanoma cells. Many mutations impairing both cell cycle and oxidative functions, or only cell cycle function, localize to the third ankyrin repeat of the p16 molecule. Alternatively, most mutations impairing oxidative but not cell cycle function, or those not impairing either function, lie outside this region. These results demonstrate that particular familial melanoma-associated mutations in p16 can selectively compromise these two independent tumor-suppressor functions, which may be mediated by distinct regions of the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。