Discussion
The above results suggest that Twist1 is required during trophoblast syncytialization. Twist1 may promote trophoblast syncytialization by regulating the expression of GCM1.
Methods
The location of the transcription factor Twist1 in human placental tissues was identified by immunohistochemistry. The expression of Twist1 and glial cells missing-1 (GCM1) was evaluated by qPCR or western blotting in two cell-fusion models including forskolin-induced fusion of BeWo cells and spontaneous syncytialization of CTBs. The key role of Twist1 in trophoblast differentiation was identified using BeWo cells transfected with Twist1-specific siRNA. We investigated the effect of hypoxia on the expression of Twist1 and GCM1 in primary CTBs cultured with 2% oxygen. The Twist1 binding region in the GCM1 gene was detected by chromatin-immunoprecipitation.
Results
Twist1 was expressed in human placental tissues, and the expression of Twist1 and GCM1 increased in a time-dependent manner during spontaneous syncytialization of primary CTBs and forskolin-induced fusion of BeWo cells. A reduction in Twist1 and GCM1 expression was observed under hypoxic conditions and was accompanied by inhibition of trophoblast syncytialization. Moreover, siRNA-mediated silencing of Twist1 resulted in inhibition of BeWo cells fusion and down-regulation of GCM1 expression. Furthermore, Twist1 was found to bind to the E-box-enriched region in intron 2 of the GCM1 gene during forskolin-induced fusion of BeWo cells.
