Post-translation digital data encoding into the genomes of mammalian cell populations

翻译后数字数据编码到哺乳动物细胞群的基因组中

阅读:4
作者:Alec Callisto, Jonathan Strutz, Kathleen Leeper, Reza Kalhor, George Church, Keith E J Tyo, Namita Bhan

Abstract

High resolution cellular signal encoding is critical for better understanding of complex biological phenomena. DNA-based biosignal encoders alter genomic or plasmid DNA in a signal dependent manner. Current approaches involve the signal of interest affecting a DNA edit by interacting with a signal specific promoter which then results in expression of the effector molecule (DNA altering enzyme). Here, we present the proof of concept of a biosignal encoding system where the enzyme terminal deoxynucleotidyl transferase (TdT) acts as the effector molecule upon directly interacting with the signal of interest. A template independent DNA polymerase (DNAp), TdT incorporates nucleotides at the 3' OH ends of DNA substrate in a signal dependent manner. By employing CRISPR-Cas9 to create double stranded breaks in genomic DNA, we make 3'OH ends available to act as substrate for TdT. We show that this system can successfully resolve and encode different concentrations of various biosignals into the genomic DNA of HEK-293T cells. Finally, we develop a simple encoding scheme associated with the tested biosignals and encode the message "HELLO WORLD" into the genomic DNA of HEK-293T cells at a population level with 91% accuracy. This work demonstrates a simple and engineerable system that can reliably store local biosignal information into the genomes of mammalian cell populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。