A specific and essential role for Na,K-ATPase α3 in neurons co-expressing α1 and α3

Na,K-ATPase α3 在共表达 α1 和 α3 的神经元中发挥特殊且重要的作用

阅读:4
作者:Guillaume Azarias, Markus Kruusmägi, Siobhan Connor, Evgeny E Akkuratov, Xiao-Li Liu, David Lyons, Hjalmar Brismar, Christian Broberger, Anita Aperia

Abstract

Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na(+) imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na(+) concentration ([Na(+)](i)) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na(+)](i), similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na(+)](i) in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na(+)](i) is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na(+). Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na(+) binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na(+)](i) were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。