Accelerated protein retention expansion microscopy using microwave radiation

利用微波辐射加速蛋白质保留扩展显微镜

阅读:5
作者:Meghan R Bullard, Juan Carlos Martinez Cervantes, Norisha B Quaicoe, Amanda Jin, Danya A Adams, Jessica M Lin, Elena Iliadis, Tess M Seidler, Isaac Cervantes-Sandoval, Hai-Yan He

Abstract

Protein retention expansion microscopy (ExM) retains genetically encoded fluorescent proteins or antibody-conjugated fluorescent probes in fixed tissue and isotropically expands the tissue through a swellable polymer network to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite numerous advantages ExM brings to biological studies, the full protocol is time-consuming and can take multiple days to complete. Here, we adapted the ExM protocol to the vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave-assisted protocol to reduce the workflow from days to hours. In addition to the significantly accelerated processing time, our microwave-assisted ExM (M/WExM) protocol maintains the superior resolution and signal-to-noise ratio of the original ExM protocol. Furthermore, the M/WExM protocol yields higher magnitude of expansion, suggesting that in addition to accelerating the process through increased diffusion rate of reagents, microwave radiation may also facilitate the expansion process. To demonstrate the applicability of this method to other specimens and protocols, we adapted the microwave-accelerated protocol to whole mount adult brain tissue of Drosophila melanogaster fruit flies, and successfully reduced the total processing time of a widely-used Drosophila IHC-ExM protocol from 6 days to 2 days. Our results demonstrate that with appropriate adjustment of the microwave parameters (wattage, pulse duration, interval, and number of cycles), this protocol can be readily adapted to different model organisms and tissue types to greatly increase the efficiency of ExM experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。