DNA extraction from archived hematoxylin and eosin-stained tissue slides for downstream molecular analysis

从已存档的苏木精和伊红染色的组织切片中提取 DNA,用于下游分子分析

阅读:5
作者:Pushkal Sinduvadi Ramesh, Venkatesh Madegowda, Suprith Kumar, Shailashree Narasimha, Parichay S R, Nandini Nandish Manoli, Devananda Devegowda

Aim

To standardize a new protocol for extracting DNA from archived H&E-stained tissue slides for further molecular assays.

Background

Histopathologically stained archived tissue slides are stored in hospital archives for years to decades. They are the largest available source of biological materials and are a potentially useful resource that can be used for retrospective epidemiological studies. DNA recovered from the slides can be used for several downstream molecular processes including polymerase chain reaction, single nucleotide polymorphism analysis, and whole genome sequencing. The DNA from these slides can be utilized to compare gene signatures of normal and diseased tissues. However, extraction of high-quality DNA from archived stained hematoxylin and eosin (H&E) slides remains challenging.

Conclusion

Here we present a step-by-step, cost-effective, and reproducible protocol for the extraction of PCR-friendly DNA from archived H&E-stained cancer tissue slides that can be used for further downstream molecular applications.

Methods

A total of 100 archived H&E-stained cancer slides were subjected to a total of five methods of DNA extraction. Methods were varied in the deparaffinization step, tissue rehydration, duration of lysis, and presence or absence of proteinase K. The extracted DNA was quantified using a NanoDrop spectrophometer and the quality was analyzed by agarose gel electrophoresis. Then each sample was subjected to polymerase chain reaction (PCR) to amplify the internal control gene GAPDH, thereby confirming the DNA intactness, which could be further utilized for other downstream applications.

Results

Of the five different methods tested, the third method wherein xylene was used for tissue deparaffinization followed by 72 h of digestion and without proteinase K inactivation yielded the highest amount of DNA with good purity. The yield was significantly higher when compared to other methods. In addition, 90% of the extracted DNA showed amplifiable GAPDH gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。