Bradykinin potentially stimulates cell proliferation in rabbit corneal endothelial cells through the ZO‑1/ZONAB pathway

缓激肽可能通过 ZO-1/ZONAB 通路刺激兔角膜内皮细胞增殖

阅读:4
作者:Lixian He, Zhou Zhou, Yi Shao, Zhen Yang, Shuangshuang Zhou, Xuexiang Zou, Ying Zhou, Gang Tan

Abstract

Bradykinin (BK) has been demonstrated to induce proliferation in several types of cell in ex vivo corneas. However, the mechanisms underlying the action of BK on corneal endothelial cells (CECs) remain largely unknown. The present study aimed to investigate the effect of BK on rabbit corneal endothelial cell (RCEC) proliferation, and assess the involvement of the zonula occludens‑1(ZO‑1)/ZO‑1associated nucleic acid binding protein (ZONAB) pathway. Cell proliferation and cell cycle distribution was analyzed following treatment with BK (0.01, 0.1,1.0 or 10.0 µM) for the indicated time intervals (24, 48, 72 and 96 h), or following BK treatment combined with transfection of ZONAB‑small interfering (si)RNA for 72 h. In addition, the expression of tight junction ZO‑1, nuclear ZONAB, proliferating cell nuclear antigen(PCNA) and cyclin D1 were evaluated using western blotting or immunofluorescence. BK treatment was demonstrated to induce time‑ and concentration‑dependent cell proliferation and cell cycle progression, along with the upregulation of tight junction ZO‑1 and nuclear ZONAB, as well as PCNA and cyclin D1 protein expression. Furthermore, knockdown with ZONAB‑siRNA inhibited cell proliferation, induced cell cycle arrest and downregulated PCNA and cyclin D1 protein expression. ZONAB knockdown therefore successfully reversed the increase in proliferation induced by BK treatment. Taken together, these results suggested that BK stimulated RCEC proliferation, potentially via the ZO‑1/ZONAB pathway. The signaling paradigm disclosed in the present study potentially serves as an important therapeutic target for cornea regeneration and transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。