A novel implant surface modification mode of Fe3O4-containing TiO2 nanorods with sinusoidal electromagnetic field for osteoblastogenesis and angiogenesis

一种利用正弦电磁场对含 Fe3O4 的 TiO2 纳米棒进行植入物表面改性的新型方法,用于成骨细胞生成和血管生成

阅读:4
作者:Ranyue Ren, Jiachao Guo, Hao Song, Yong Wei, Chao Luo, Yayun Zhang, Liangxi Chen, Biao Gao, Jijiang Fu, Wei Xiong

Abstract

Implants made of Ti and its alloys are widely utilized in orthopaedic surgeries. However, insufficient osseointegration of the implants often causes complications such as aseptic loosening. Our previous research discovered that disordered titanium dioxide nanorods (TNrs) had satisfactory antibacterial properties and biocompatibility, but TNrs harmed angiogenic differentiation, which might retarded the osseointegration process of the implants. Magnetic nanomaterials have a certain potential in promoting osseointegration, electromagnetic fields within a specific frequency and intensity range can facilitate angiogenic and osteogenic differentiation. Therefore, this study used Fe3O4 to endow magnetism to TNrs and explored the regulation effects of Ti, TNrs, and Fe3O4-TNrs under 1 ​mT 15 ​Hz sinusoidal electromagnetic field (SEMF) on osteoblastogenesis, osseointegration, angiogenesis, and its mechanism. We discovered that after the addition of SEMF treatment to VR-EPCs cultured on Fe3O4-TNrs, the calcineurin/NFAT signaling pathway was activated, which then reversed the inhibitory effect of Fe3O4-TNrs on angiogenesis. Besides, Fe3O4-TNrs with SEMF enhanced osteogenic differentiation and osseointegration. Therefore, the implant modification mode of Fe3O4-TNrs with the addition of SEMF could more comprehensively promote osseointegration and provided a new idea for the modification of implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。