Rosiglitazone ameliorates astrocyte over-activation and inflammatory cytokine release induced by global cerebral ischemia/reperfusion

罗格列酮改善全脑缺血/再灌注引起的星形胶质细胞过度活化和炎性细胞因子释放

阅读:4
作者:Shanling Ren, Yan Xu, Dongwei Lv, Lei Zhang

Abstract

Global cerebral ischemia (GCI) is a leading cause of mortality worldwide and remains the primary cause of long-term neurological disability. Astrocyte over-activation and extensive neuron loss in the ischemic brain are the characteristic pathological features of cerebral ischemia. Rosiglitazone (RSG) is a peroxisome-proliferating activating receptor-γ agonist known for its anti-inflammatory activity. Previous studies have suggested that RSG is able to exert neuroprotection in numerous acute and chronic brain injury models. However, whether RSG treatment is involved in astrocyte over-activation and inflammatory reaction in the cortex remains unclear. The aim of the present study was to investigate whether RSG treatment improved functional impairment induced following GCI and protected against cortex neuron loss, and to elucidate the potential mechanisms underlying these functions. Rats were randomly divided into three groups: Sham-operated, GCI and RSG treatment groups. The RSG treatment group was treated with 2 mg/kg RSG immediately following GCI. The results demonstrated that RSG treatment significantly reduced infarct volume and neuron survival rates in addition to increasing function recovery. Furthermore, these results correlate with a reduction in astrocyte over-activation and inflammatory cytokines in the rat cortex. However, no significant changes in glutamate transporter-1 expression levels were observed following RSG treatment compared with the GCI rats. The results of this investigation provide in vivo evidence that RSG significantly protected rats against ischemia-reperfusion-induced brain injury. In addition, RSG may exert neuroprotective effects by inhibiting astrocyte over-activation, and thereby reducing the levels of inflammatory cytokines in the GCI-injured brain. All data revealed that RSG may be a potential neuroprotective agent for cerebral ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。