Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production

表没食子儿茶素没食子酸酯通过增强可溶性 gp130 的产生来抑制 IL-6 合成并抑制转信号传导

阅读:4
作者:Salahuddin Ahmed, Hubert Marotte, Kevin Kwan, Jeffrey H Ruth, Phillip L Campbell, Bradley J Rabquer, Angela Pakozdi, Alisa E Koch

Abstract

Regulation of IL-6 transsignaling by the administration of soluble gp130 (sgp130) receptor to capture the IL-6/soluble IL-6R complex has shown promise for the treatment of rheumatoid arthritis (RA). However, enhancing endogenous sgp130 via alternative splicing of the gp130 gene has not yet been tested. We found that epigallocatechin-3-gallate (EGCG), an anti-inflammatory compound found in green tea, inhibits IL-1beta-induced IL-6 production and transsignaling in RA synovial fibroblasts by inducing alternative splicing of gp130 mRNA, resulting in enhanced sgp130 production. Results from in vivo studies using a rat adjuvant-induced arthritis model showed specific inhibition of IL-6 levels in the serum and joints of EGCG-treated rats by 28% and 40%, respectively, with concomitant amelioration of rat adjuvant-induced arthritis. We also observed a marked decrease in membrane-bound gp130 protein expression in the joint homogenates of the EGCG-treated group. In contrast, quantitative RT-PCR showed that the gp130/IL-6Ralpha mRNA ratio increased by approximately 2-fold, suggesting a possible mechanism of sgp130 activation by EGCG. Gelatin zymography results showed EGCG inhibits IL-6/soluble IL-6R-induced matrix metalloproteinase-2 activity in RA synovial fibroblasts and in joint homogenates, possibly via up-regulation of sgp130 synthesis. The results of these studies provide previously undescribed evidence of IL-6 synthesis and transsignaling inhibition by EGCG with a unique mechanism of sgp130 up-regulation, and thus hold promise as a potential therapeutic agent for RA.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。