Total flavonoids of Hedyotis diffusa Willd inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κB and MAPK signaling pathways

白花蛇舌草总黄酮通过抑制 NF-κB 和 MAPK 信号通路抑制 LPS 激活的巨噬细胞炎症反应

阅读:5
作者:Yunlong Chen, Yanyan Lin, Yachan Li, Candong Li

Abstract

Nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways play a central role in inflammatory responses. Total flavonoids of Hedyotis diffusa Willd (TFHDW) are active compounds derived from Hedyotis diffusa Willd, which has been long used in Chinese traditional medicine for the treatment of various inflammatory diseases, including ulcerative colitis and bronchitis; however, the precise mechanisms underlying the effects of TFHDW are largely unknown. In the present study, the anti-inflammatory effect of TFHDW was evaluated and the underlying molecular mechanisms were investigated in an in vitro inflammatory model comprising lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The results indicated that TFHDW inhibited the inflammatory response as it significantly reduced the LPS-induced expression of pro-inflammatory nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in a concentration-dependent manner, without causing cytotoxicity. In addition, the mRNA expression of inducible nitric oxide synthase, TNF-α, IL-6 and IL-1β was suppressed by treatment with TFHDW in LPS-stimulated RAW 264.7 cells. Moreover, TFHDW treatment significantly inhibited the LPS-induced activation of NF-κB via the suppression of inhibitor of κB (IκB) phosphorylation, and reduced the phosphorylation of MAPK signaling molecules (p38, c-Jun N-terminal protein kinase and extracellular signal-regulated kinase 1/2), which resulted in the inhibition of cytokine expression. These findings suggest that TFHDW exerted anti-inflammatory activity via suppression of the NF-κB and MAPK signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。