4-Octyl itaconate alleviates dextran sulfate sodium-induced ulcerative colitis in mice via activating the KEAP1-NRF2 pathway

4-辛基衣康酸酯通过激活 KEAP1-NRF2 通路减轻小鼠葡聚糖硫酸钠诱发的溃疡性结肠炎

阅读:3
作者:Yujin Wang #, Xue Zhao #, Yifei Gao, Chenxi Zhao, Jingxin Li, Shuanglian Wang, Bing Xue, Chuanyong Liu, Xuelian Ma

Abstract

Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease with a relapsing-remitting course. Although its etiology remains unknown, excessive oxidative stress in colon is a major intermediate factor that can promote the progression of UC. In the present study, we investigated the effect and the underlying mechanisms of 4-Octyl itaconate (OI) on dextran sulfate sodium (DSS)-induced UC in mice. Our work identified that OI alleviated the colitis by reducing the oxidative stress and the apoptosis in colon tissue, then increasing the tight junction proteins expression and in turn enhancing the intestinal barrier function, thereby creating less severe inflammatory responses. Moreover, our results demonstrated that OI reduced the Kelch-like ECH-associated protein 1 (KEAP1) expression and subsequent upregulated nuclear factor E2-related factor (NRF2) expression and its nuclear translocation which in turn induced the expression of glutathione S-transferase (GST) and NAD(P)H: quinone oxidoreductase 1 (NQO1). In addition, ML385, a NRF2 antagonist, can inhibit the protective effects of OI on UC, indicating that the role of OI in this colitis model could be dependent on the activation of KEAP1-NRF2 pathway. Notably, OI co-administration significantly enhanced the therapeutic effects of mesalazine or 1400W on UC. Collectively, itaconate may have a great potential for use in the treatment of IBD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。