Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments

模拟急性石油泄漏对北极和南极海洋沉积物细菌群落的影响

阅读:6
作者:Carmen Rizzo, Roberta Malavenda, Berna Gerçe, Maria Papale, Christoph Syldatk, Rudolf Hausmann, Vivia Bruni, Luigi Michaud, Angelina Lo Giudice, Stefano Amalfitano

Background

The bacterial community responses to oil spill events are key elements to predict the fate of hydrocarbon pollution in receiving aquatic environments. In polar systems, cold temperatures and low irradiance levels can limit the effectiveness of contamination removal processes. In this study, the effects of a simulated acute oil spillage on bacterial communities from polar sediments were investigated, by assessing the role of hydrocarbon mixture, incubation time and source bacterial community in selecting oil-degrading bacterial phylotypes.

Conclusions

Our findings indicated that polar bacterial populations are able to respond to the detrimental effects of simulated hydrocarbon pollution, by developing into a more specialized active oil degrading community.

Methods

The bacterial hydrocarbon degradation was evaluated by gas chromatography. Flow cytometric and fingerprinting profiles were used to assess the bacterial community dynamics over the experimental incubation time.

Results

Direct responses to the simulated oil spill event were found from both Arctic and Antarctic settings, with recurrent bacterial community traits and diversity profiles, especially in crude oil enrichment. Along with the dominance of Pseudomonas spp., members of the well-known hydrocarbon degraders Granulosicoccus spp. and Cycloclasticus spp. were retrieved from both sediments. Conclusions: Our findings indicated that polar bacterial populations are able to respond to the detrimental effects of simulated hydrocarbon pollution, by developing into a more specialized active oil degrading community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。