Neutrophil degranulation interconnects over-represented biological processes in atrial fibrillation

中性粒细胞脱颗粒与心房颤动中过度表现的生物过程相互联系

阅读:5
作者:Makiri Kawasaki #, Eva R Meulendijks #, Nicoline W E van den Berg, Fransisca A Nariswari, Jolien Neefs, Robin Wesselink, Sarah W E Baalman, Aldo Jongejan, Tim Schelfhorst, Sander R Piersma, Thang V Pham, Wim J P van Boven, Antoine H G Driessen, Connie R Jimenez, Joris R de Groot

Abstract

Despite our expanding knowledge about the mechanism underlying atrial fibrillation (AF), the interplay between the biological events underlying AF remains incompletely understood. This study aimed to identify the functionally enriched gene-sets in AF and capture their interconnection via pivotal factors, that may drive or be driven by AF. Global abundance of the proteins in the left atrium of AF patients compared to control patients (n = 3/group), and the functionally enriched biological processes in AF were determined by mass-spectrometry and gene set enrichment analysis, respectively. The data were validated in an independent cohort (n = 19-20/group). In AF, the gene-sets of innate immune system, metabolic process, cellular component disassembly and ion homeostasis were up-regulated, while the gene-set of ciliogenesis was down-regulated. The innate immune system was over-represented by neutrophil degranulation, the components of which were extensively shared by other gene-sets altered in AF. In the independent cohort, an activated form of neutrophils was more present in the left atrium of AF patients with the increased gene expression of neutrophil granules. MYH10, required for ciliogenesis, was decreased in the atrial fibroblasts of AF patients. We report the increased neutrophil degranulation appears to play a pivotal role, and affects multiple biological processes altered in AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。