Cytokine induced 3-D organotypic psoriasis skin model demonstrates distinct roles for NF-κB and JAK pathways in disease pathophysiology

细胞因子诱导的 3-D 器官型银屑病皮肤模型证明了 NF-κB 和 JAK 通路在疾病病理生理学中的不同作用

阅读:5
作者:Viktor Todorović, Heath A McDonald, Paul Hoover, Joseph B Wetter, Anastasia E Marinopoulos, Clarissa L Woody, Loan Miller, Ariel Finkielsztein, Robert W Dunstan, Amy S Paller, Prisca Honore, Spiro Getsios, Victoria E Scott

Abstract

Psoriasis vulgaris is an inflammatory skin disease that affects 2%-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here, we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin) and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signalling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signalling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。