Upregulation of Adipogenesis and Chondrogenesis in MSC Serum-Free Culture

MSC 无血清培养中脂肪生成和软骨生成的上调

阅读:5
作者:Saey Tuan Barnabas Ho, Vivek Madhukar Tanavde, James Hoi Hui, Eng Hin Lee

Abstract

Serum-free media have been shown to be effective in the expansion of mesenchymal stem cells (MSCs). However, the effects may go beyond cell expansion as the differentiation potentials of the cells may be modified, thus influencing their efficacy for downstream applications. The latter is poorly understood, and this has prompted an evaluation of the influence of a serum-free formulation on the chondrogenic, adipogenic, and osteogenic potential of MSCs. The media consisted of Knockout™ Serum Replacement (KSR) with a cocktail of growth factors coupled with either collagen or fibronectin coatings. Collagen coating was selected as it promoted consistent cellular attachment. When compared against fetal bovine serum (FBS) controls, cell proliferation in the serum-free media was enhanced at passage 1. Similar levels of surface markers were observed in the two groups with a slight reduction in CD90 and CD73 in the serum-free culture at passage 3. The cultures were screened under differentiation conditions and a better maintenance of the chondrogenic potential was noted in the serum-free media with higher expressions of glycoaminoglycans (GAGs) and collagen II. Chondrogenesis was deficient in the FBS group and this was attributed to the inherent inconsistency of animal serum. Adipogenesis was enhanced in the serum-free group with a higher PPARG expression and lipid accumulation. Similar levels of osteogenic mineralization was noted in the FBS and serum-free groups but collagen I gene expression was suppressed in the latter. This was initially observed during expansion. These observations were attributed to the signaling cascades triggered by the cytokines presented in the serum-free formulation and the interaction with the collagen substrate. The serum-free media helps to maintain and enhance the chondrogenic and adipogenic potentials of the MSCs, respectively. This advantage can be exploited for therapeutic applications in cartilage and adipose tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。