Scutellarin ameliorates ischemia/reperfusion injury‑induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS‑STING pathway

灯盏花素通过抑制 cGAS-STING 通路改善缺血/再灌注损伤引起的心肌细胞凋亡和心脏功能障碍

阅读:5
作者:Jiu-Kang Li, Zhi-Ping Song, Xing-Zhi Hou

Abstract

Ischemic heart disease is a common cardiovascular disease. Scutellarin (SCU) exhibits protective effects in ischemic cardiomyocytes; however, to the best of our knowledge, the protective mechanism of SCU remains unclear. The present study was performed to investigate the protective effect of SCU on cardiomyocytes after ischemia/reperfusion (I/R) injury and the underlying mechanism. Mice were intraperitoneally injected with SCU (20 mg/kg) for 7 days before establishing the heart I/R injury model. Cardiac function was detected using small animal echocardiography, apoptotic cells were visualized using TUNEL staining, the myocardial infarct area was assessed by 2,3,5-triphenyltetrazolium chloride staining, and the protein levels of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. In in vitro experiments, H9c2 cells were pretreated with SCU, RU.521 (cGAS inhibitor) and H-151 (STING inhibitor), before cell hypoxia/reoxygenation (H/R) injury. The viability of H9c2 cells was detected using a Cell Counting Kit-8 assay, the rate of apoptosis was determined by flow cytometry, and the protein expression levels of cGAS, STING, Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. It was revealed that SCU ameliorated cardiac dysfunction and apoptosis, and inhibited the activation of the cGAS-STING and Bcl-2/Bax/Caspase-3 signaling pathways in I/R-injured mice. It was also observed that SCU significantly increased cell viability and decreased apoptosis in H/R-induced H9c2 cells. Furthermore, H/R increased the expression levels of cGAS, STING and cleaved Caspase-3, and decreased the ratio of Bcl-2/Bax, which could be reversed by treatment with SCU, RU.521 and H-151. The present study demonstrated that the cGAS-STING signaling pathway may be involved in the regulation of the activation of the Bcl-2/Bax/Caspase-3 signaling pathway to mediate I/R-induced cardiomyocyte apoptosis and cardiac dysfunction, which could be ameliorated by SCU treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。