NSUN2 mediates distinct pathways to regulate enterovirus 71 replication

NSUN2 介导不同途径来调节肠道病毒 71 型复制

阅读:4
作者:Lishi Liu, Zhen Chen, Kui Zhang, Haojie Hao, Li Ma, Haizhou Liu, Baocheng Yu, Shuang Ding, Xueyan Zhang, Miao Zhu, Xiang Guo, Yi Liu, Haibin Liu, Fang Huang, Ke Peng, Wuxiang Guan

Abstract

Increasing evidences suggest that the methyltransferase NSUN2 catalyzes 5-methylcytosine (m5C) modifications on viral RNAs, which are essential for the replication of various viruses. Despite the function of m5C deposition is well characterized, other potential roles of NSUN2 in regulating viral replication remain largely unknown. In this study, the m5C modified residues catalyzed by NSUN2 on enterovirus 71 (EV71) RNAs were mapped. NSUN2, along with m5C modifications, played multiple roles during the EV71 life cycle. Functional m5C modified nucleotides increased the translational efficiency and stability of EV71 RNAs. Additionally, NSUN2 was found to target the viral protein VP1 for binding and promote its stability by inhibiting the ubiquitination. Furthermore, both viral replication and pathogenicity in mice were largely attenuated when functional m5C residues were mutated. Taken together, this study characterizes distinct pathways mediated by NSUN2 in regulating EV71 replication, and highlights the importance of its catalyzed m5C modifications on EV71 RNAs for the viral replication and pathogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。