C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins

C9ORF72 聚(GA)聚集体隔离并损害 HR23 和核质转运蛋白

阅读:3
作者:Yong-Jie Zhang, Tania F Gendron, Jonathan C Grima, Hiroki Sasaguri, Karen Jansen-West, Ya-Fei Xu, Rebecca B Katzman, Jennifer Gass, Melissa E Murray, Mitsuru Shinohara, Wen-Lang Lin, Aliesha Garrett, Jeannette N Stankowski, Lillian Daughrity, Jimei Tong, Emilie A Perkerson, Mei Yue, Jeannie Chew, Mo

Abstract

Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。