Quality-Quantity Control Culture Enhances Vasculogenesis and Wound Healing Efficacy of Human Diabetic Peripheral Blood CD34+ Cells

质控培养增强人类糖尿病外周血 CD34+ 细胞的血管生成和伤口愈合功效

阅读:5
作者:Rica Tanaka, Haruchika Masuda, Satoshi Fujimura, Rie Ito-Hirano, Kayo Arita, Yusuke Kakinuma, Hiroko Hagiwara, Makiko Kado, Ayato Hayashi, Tomoya Mita, Takasuke Ogawa, Hirotaka Watada, Hiroshi Mizuno, Naoki Sawada, Takayuki Asahara

Abstract

Autologous endothelial progenitor cell (EPC) therapy is commonly used to stimulate angiogenesis in ischemic repair and wound healing. However, low total numbers and functional deficits of EPCs make autologous EPC therapy ineffective in diabetes. Currently, no known ex vivo culture techniques can expand and/or ameliorate the functional deficits of EPCs for clinical usage. Recently, we showed that a quality-quantity culture (QQc) system restores the vasculogenic and wound-healing efficacy of murine diabetic EPCs. To validate these results and elucidate the mechanism in a translational study, we evaluated the efficacy of this QQc system to restore the vasculogenic potential of diabetic human peripheral blood (PB) CD34+ cells. CD34+ cells purified from PB of diabetic and healthy patients were subjected to QQc. Gene expression, vascular regeneration, and expression of cytokines and paracrine mediators were analyzed. Pre- or post-QQc diabetic human PB-CD34+ cells were transplanted into wounded BALB/c nude mice and streptozotocin-induced diabetic mice to assess functional efficacy. Post-QQc diabetic human PB-CD34+ cell therapy significantly accelerated wound closure, re-epithelialization, and angiogenesis. The higher therapeutic efficacy of post-QQc diabetic human PB-CD34+ cells was attributed to increased differentiation ability of diabetic CD34+ cells, direct vasculogenesis, and enhanced expression of angiogenic factors and wound-healing genes. Thus, QQc can significantly enhance the therapeutic efficacy of human PB-CD34+ cells in diabetic wounds, overcoming the inherent limitation of autologous cell therapy in diabetic patients, and could be useful for treatment of not only wounds but also other ischemic diseases. Stem Cells Translational Medicine 2018;7:428-438.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。