Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering

基于多组分、原位可点击弹性蛋白样重组体系统的随机定向电纺纤维,用于真皮组织工程

阅读:5
作者:Israel González de Torre, Arturo Ibáñez-Fonseca, Luis Quintanilla, Matilde Alonso, José-Carlos Rodríguez-Cabello

Significance

For the first time stable electrospun bioactive fibers are obtained by the in situ mixing of two "clickable" ELR components previously described by Gonzalez et al (Acta Biomaterialia 2014). This work describes an efficient system to prepare fibrous scaffolds based on peptidic polymers by electrospinning without the need of crosslinking agents that could be harmful for cells or living tissues. These bioactive fibers support cell growth due to the inclusion of RGD motifs (Staubli et al. Biomaterials 2017). Finally, the in vitro biocompatibility of the two main cell types found in the outer layers of skin, fibroblasts and keratinocytes, indicates that this system is of great interest to prepare elastic artificial skin substitutes for wound healing applications.

Statement of significance

For the first time stable electrospun bioactive fibers are obtained by the in situ mixing of two "clickable" ELR components previously described by Gonzalez et al (Acta Biomaterialia 2014). This work describes an efficient system to prepare fibrous scaffolds based on peptidic polymers by electrospinning without the need of crosslinking agents that could be harmful for cells or living tissues. These bioactive fibers support cell growth due to the inclusion of RGD motifs (Staubli et al. Biomaterials 2017). Finally, the in vitro biocompatibility of the two main cell types found in the outer layers of skin, fibroblasts and keratinocytes, indicates that this system is of great interest to prepare elastic artificial skin substitutes for wound healing applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。