Human indoleamine 2,3-dioxygenase is a catalyst of physiological heme peroxidase reactions: implications for the inhibition of dioxygenase activity by hydrogen peroxide

人类吲哚胺 2,3-双加氧酶是生理血红素过氧化物酶反应的催化剂:与过氧化氢抑制双加氧酶活性有关

阅读:4
作者:Mohammed Freewan, Martin D Rees, Tito S Sempértegui Plaza, Elias Glaros, Yean J Lim, Xiao Suo Wang, Amanda W S Yeung, Paul K Witting, Andrew C Terentis, Shane R Thomas

Abstract

The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H(2)O(2)) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H(2)O(2) inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H(2)O(2) consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H(2)O(2) consumption and attenuated H(2)O(2)-induced protein oxidation and dioxygenase inhibition. In the presence of H(2)O(2), rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H(2)O(2) consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H(2)O(2) and NO are elevated and l-Trp is low.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。