POSTN Regulates Fibroblast Proliferation and Migration in Laryngotracheal Stenosis Through the TGF-β/RHOA Pathway

POSTN 通过 TGF-β/RHOA 通路调节喉气管狭窄中的成纤维细胞增殖和迁移

阅读:9
作者:Zhiqiang She, Huiying Chen, Xiaoyu Lin, Chao Li, Jiping Su

Conclusion

POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-β/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-β1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. Level of evidence: NA Laryngoscope, 134:4078-4087, 2024.

Methods

Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-β pathways in fibrosis diseases. Expression of POSTN and TGF-β pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-β1 and the regulation of cell proliferation and migration via the TGF-β/RHOA pathway.

Results

The bioinformatics analysis revealed that POSTN and the TGF-β pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-β/RHOA pathway-related molecules (TGFβ1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-β1 and regulation of cell proliferation and migration through the TGF-β/RHOA pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。