Intrinsic and extrinsic regulation of rhabdomyolysis susceptibility by Tango2

Tango2 对横纹肌溶解症易感性的内在和外在调节

阅读:7
作者:Euri S Kim, Jennifer G Casey, Brian S Tao, Arian Mansur, Nishanthi Mathiyalagan, E Diane Wallace, Brandie M Ehrmann, Vandana A Gupta

Abstract

Rhabdomyolysis is a clinical emergency characterized by severe muscle damage, resulting in the release of intracellular muscle components, which leads to myoglobinuria and, in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations in TANGO2 result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia. The underlying mechanism contributing to disease onset in response to specific triggers remains unclear. To address these challenges, we created a zebrafish model of Tango2 deficiency. Here, we demonstrate that the loss of Tango2 in zebrafish results in growth defects, early lethality and increased susceptibility of skeletal muscle defects in response to extrinsic triggers, similar to TANGO2-deficient patients. Using lipidomics, we identified alterations in the glycerolipid pathway in tango2 mutants, which is critical for membrane stability and energy balance. Therefore, these studies provide insight into key disease processes in Tango2 deficiency and have increased our understanding of the impacts of specific defects on predisposition to environmental triggers in TANGO2-related disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。