Neuroprotective effect of Na+ /H+ exchangers isoform-1 inactivation against 6-hydroxydopamine-induced mitochondrial dysfunction and neuronal apoptosis in Parkinson's disease models

Na+ /H+ 交换异构体-1 失活对帕金森病模型中 6-羟基多巴胺诱导的线粒体功能障碍和神经元凋亡的神经保护作用

阅读:4
作者:Ruixian Xing, Xuewen Liu, Buxian Tian, Yan Cheng, Longguang Li

Abstract

Parkinson's disease (PD) is a disabling neurodegenerative disease mainly caused by degeneration of mesencephalic dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neuroprotective role of Na+ /H+ exchangers isoform-1 (NHE1) inactivation in cerebral ischemic damage has been elucidated. The current study aimed to investigate the impacts of NHE1 in PD. In this study, 6-hydroxydopamine (6-OHDA)-induced PD rat models were established to attempt to illuminate the role and underlying mechanisms of NHE1 in SNpc neurons of PD. Meanwhile, nerve growth factor-stimulated PC12 cells followed by 6-OHDA treatment was used to mimic PD in vitro. Results showed that the protein levels of NHE1 were significantly increased in the SNpc neurons of rats and differentiated PC12 cells after 6-OHDA treatment. Inactivation of NHE1 with chemical inhibitor HOE642 suppressed SNpc neuronal loss and NHE1 expression in PD rats. The overlays of tyrosine hydroxylase and NHE1 displayed that NHE1 expression was not colocalized but closely associated with TH. Besides, treatment with HOE642 relieved the dyskinesia, mitochondrial dysfunction, and neuronal apoptosis. Further in vitro evidence confirmed that inhibition of NHE1 by genetic-knockdown prevented mitochondrial dysfunction and apoptosis. Our study represents the first experimental evidence of a potential role for NHE1 in the pathogenesis of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。