Plasma biomarkers for Alzheimer's Disease in relation to neuropathology and cognitive change

阿尔茨海默病血浆生物标志物与神经病理学和认知变化的关系

阅读:5
作者:Denis S Smirnov #, Nicholas J Ashton #, Kaj Blennow, Henrik Zetterberg, Joel Simrén, Juan Lantero-Rodriguez, Thomas K Karikari, Annie Hiniker, Robert A Rissman, David P Salmon, Douglas Galasko

Abstract

Plasma biomarkers related to amyloid, tau, and neurodegeneration (ATN) show great promise for identifying these pathological features of Alzheimer's Disease (AD) as shown by recent clinical studies and selected autopsy studies. We have evaluated ATN plasma biomarkers in a series of 312 well-characterized longitudinally followed research subjects with plasma available within 5 years or less before autopsy and examined these biomarkers in relation to a spectrum of AD and related pathologies. Plasma Aβ42, Aβ40, total Tau, P-tau181, P-tau231 and neurofilament light (NfL) were measured using Single molecule array (Simoa) assays. Neuropathological findings were assessed using standard research protocols. Comparing plasma biomarkers with pathology diagnoses and ratings, we found that P-tau181 (AUC = 0.856) and P-tau231 (AUC = 0.773) showed the strongest overall sensitivity and specificity for AD neuropathological change (ADNC). Plasma P-tau231 showed increases at earlier ADNC stages than other biomarkers. Plasma Aβ42/40 was decreased in relation to amyloid and AD pathology, with modest diagnostic accuracy (AUC = 0.601). NfL was increased in non-AD cases and in a subset of those with ADNC. Plasma biomarkers did not show changes in Lewy body disease (LBD), hippocampal sclerosis of aging (HS) or limbic-predominant age-related TDP-43 encephalopathy (LATE) unless ADNC was present. Higher levels of P-tau181, 231 and NfL predicted faster cognitive decline, as early as 10 years prior to autopsy, even among people with normal cognition or mild cognitive impairment. These results support plasma P-tau181 and 231 as diagnostic biomarkers related to ADNC that also can help to predict future cognitive decline, even in predementia stages. Although NfL was not consistently increased in plasma in AD and shows increases in several neurological disorders, it had utility to predict cognitive decline. Plasma Aβ42/40 as measured in this study was a relatively weak predictor of amyloid pathology, and different assay methods may be needed to improve on this. Additional plasma biomarkers are needed to detect the presence and impact of LBD and LATE pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。