IL-1β and Inflammasome Activity Link Inflammation to Abnormal Fetal Airway Development

IL-1β 和炎症小体活性将炎症与胎儿气道发育异常联系起来

阅读:6
作者:Ashley N Stouch, Alyssa M McCoy, Rachel M Greer, Omar Lakhdari, Fiona E Yull, Timothy S Blackwell, Hal M Hoffman, Lawrence S Prince

Abstract

Inflammation in the developing preterm lung leads to disrupted airway morphogenesis and chronic lung disease in human neonates. However, the molecular mechanisms linking inflammation and the pathways controlling airway morphogenesis remain unclear. In this article, we show that IL-1β released by activated fetal lung macrophages is the key inflammatory mediator that disrupts airway morphogenesis. In mouse lung explants, blocking IL-1β expression, posttranslational processing, and signaling protected the formation of new airways from the inhibitory effects ofEscherichia coliLPS. Consistent with a critical role for IL-1β, mice expressing a gain-of-functionNlrp3allele and subsequent overactive inflammasome activity displayed abnormal saccular-stage lung morphogenesis and died soon after birth. Although the early-stage fetal lung appeared capable of mounting an NF-κB-mediated immune response, airway formation became more sensitive to inflammation later in development. This period of susceptibility coincided with higher expression of multiple inflammasome components that could increase the ability to release bioactive IL-1β. Macrophages fromNlrp3gain-of-function mice also expressed higher levels of more mature cell surface markers, additionally linking inflammasome activation with macrophage maturation. These data identify developmental expression of the inflammasome and IL-1β release by fetal lung macrophages as key mechanisms and potential therapeutic targets for neonatal lung disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。