A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction

通过类共价氢键相互作用实现的多功能水凝胶网络修复策略

阅读:7
作者:Zilong Han, Peng Wang, Yuchen Lu, Zheng Jia, Shaoxing Qu, Wei Yang

Abstract

Hydrogen bond engineering is widely exploited to impart stretchability, toughness, and self-healing capability to hydrogels. However, the enhancement effect of conventional hydrogen bonds is severely limited by their weak interaction strength. In nature, some organisms tolerate extreme conditions due to the strong hydrogen bond interactions induced by trehalose. Here, we report a trehalose network-repairing strategy achieved by the covalent-like hydrogen bonding interactions to improve the hydrogels' mechanical properties while simultaneously enabling them to tolerate extreme environmental conditions and retain synthetic simplicity, which proves to be useful for various kinds of hydrogels. The mechanical properties of trehalose-modified hydrogels including strength, stretchability, and fracture toughness are substantially enhanced under a wide range of temperatures. After dehydration, the modified hydrogels maintain their hyperelasticity and functions, while the unmodified hydrogels collapse. This strategy provides a versatile methodology for synthesizing extremotolerant, highly stretchable, and tough hydrogels, which expand their potential applications to various conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。