Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification

单点铁锚定淀粉样蛋白水凝胶作为酒精解毒的催化平台

阅读:4
作者:Jiaqi Su #, Pengjie Wang #, Wei Zhou, Mohammad Peydayesh, Jiangtao Zhou, Tonghui Jin, Felix Donat, Cuiyuan Jin, Lu Xia, Kaiwen Wang, Fazheng Ren, Paul Van der Meeren, F Pelayo García de Arquer, Raffaele Mezzenga

Abstract

Constructing effective antidotes to reduce global health impacts induced by alcohol prevalence is a challenging topic. Despite the positive effects observed with intravenous applications of natural enzyme complexes, their insufficient activities and complicated usage often result in the accumulation of toxic acetaldehyde, which raises important clinical concerns, highlighting the pressing need for stable oral strategies. Here we present an effective solution for alcohol detoxification by employing a biomimetic-nanozyme amyloid hydrogel as an orally administered catalytic platform. We exploit amyloid fibrils derived from β-lactoglobulin, a readily accessible milk protein that is rich in coordinable nitrogen atoms, as a nanocarrier to stabilize atomically dispersed iron (ferrous-dominated). By emulating the coordination structure of the horseradish peroxidase enzyme, the single-site iron nanozyme demonstrates the capability to selectively catalyse alcohol oxidation into acetic acid, as opposed to the more toxic acetaldehyde. Administering the gelatinous nanozyme to mice suffering from alcohol intoxication significantly reduced their blood-alcohol levels (decreased by 55.8% 300 min post-alcohol intake) without causing additional acetaldehyde build-up. Our hydrogel further demonstrates a protective effect on the liver, while simultaneously mitigating intestinal damage and dysbiosis associated with chronic alcohol consumption, introducing a promising strategy in effective alcohol detoxification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。